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We consider the problem of the equivalence of a certain system of ordinary diff- 

erential equations to a system of Lagrange equations. Wherever we do not ex - 

pressly say so, we have in mind sationary nonholonomic Chaplygin systems with 

linear constraints. The equations of motion of non-holonomic systems in the 

Routh form, Chaplygin in appearance, differ from the Lagrange equations of the 

second kind in the presence of additional terms (constraint reactions, nonholo- 

nomic terms). This fact hinders the extension of integration methods of equations 

of motion of hnlonomic systems to nonholonomic ones. The few attempts [l, 21 

to seek general methods for integrating the equations of nonholonomic mechanics 

were reduced to the transformation of the equations of motion to Lagrange form 

[3]. The equations of motion of nonholonomic systems have the form of Lagrange 

equations [l, 41 only in exceptional cases. 

The problem of determining the conditions which guarantee the equivalence 

of a given system of differential equations 

F; ((/I”, . . ..q.", 'il.... I 'I,,' , 'j19....'/,, l)=U (j = i,...,rf) (0.1) 

with the Lagrange system 
<I 0 

I,; (0) L u (I’=i..,..u) 
i 

I,j’ L 7-- 
dl d(I ) L”I, j 

(V. 2) 

where 0 is a certain function of qr’, . . . . q,,‘, ql, . . . . qT1, l,is a familiar one. 

Necessary and sufficient conditions (the Helmholtz conditions) were obtained in 

[5 - 71 on whose basis we can determine from the appearance of Eqs. (0.1) whe- 

ther each of these equations individually is a Lagrange equation relative to the 

function 0 called the IIelmholtz kinetic potential. It should be noted that the 

Helmholtz conditions applied by Chaplygin are usually not fulfilled for Routh 

equations [S, 91, nevertheless, in some cases, by combining these equations 

they can be replaced by an equivalent Lagrange system [S]. A theorem was proven 

in [lo] that the equations of motion of a mechanical system with linear nonint- 

egrable constraints 

wi = vi. + 2 ois (CJI~. . . , (I,,, /) ‘I,’ $- 11~ (‘I,, . . . 1 vi,. 0 = 0 (i = I,. . . , 1s < 10 

s- h-j-1 
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are not equivalent to the system of Eqs. (0.2) where 

(bib, Cj, f’ are arbitrary functions of ql, . . . . q,,, t), hi are certain functions chosen 

f;,om the condition that the equations for the extremals of the functional 

s 
Bdt have the form (0.2) (a conditional variational problem with fixed end - 

ihints). But for certain nonholonomic mechanical systems Eqs. (0.2) may be 

valid [11] when there exists a particular solution of the so-called “equations of 
equivalence”. It was shown in [ll] how to set up the equations of equivalence, 

but the equations themselves were not cited and they were not analyzed. If the 
equations of motion of a nonholonomic system are solved relative to acceleration, 

then the right-hand sides of the equations obtained are certain quadratic forms 

in the velocities. Below, for a system of two such equations with right-hand sides 

which are arbitrary homogeneous quadratic forms in the velocities, we prove a 
theorem which, with the aid only of differentiation and algebraic manipulations, 

allow us to ascertain whether we can obtain the given equations from some system 

of Lagrange equations by means of a solution relative to the second derivatives, 

if the kinetic potential is an arbitrary nondegenerate homogeneous quadratic 
form in the velocities. 

1, Consider the two systems of equations 

in which 

where 

qk” = F, (k = 1, . . ., m) 

L, ((3) = 0 @=I,..., m) 

m 

Fk = -+ 2 frik ((II, . . ., qm) qr*qi* (f,i’ ~ fi,“) 
i, r=l 

m 

(Cii = Cji) 

det II cij II # Q (I.31 

For these systems to be equivalent it is necessary [12] that the function 6 satisfy the 

collection of partial differential equations 

where the quantities qt , . . . , gm , ql,. . . , qm are treated as independent variables. The 
values of qr’, . . . , qn’ can be chosen arbitrarily, therefore the coefficients of the quad - 
ratic forms must vanish identically 

( r, i, j = 1, . . ., m) (l-5) 
k=l 

In order to simplify the system of equations (1.5) we replace every equation O,,ij = 0 
by the equation x,~, = ‘/* (Oirj t wjir) = 0, and we obtain 
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Conversely, Wijr = +ij - Xijr + Xj,i. Relations (1,6), in which the functions friii are 
assumed specified, represent a system of 1/z ma (n + 1) partial differential equations 
in the Ii2 m (m + 1) of unknown functions ci;. We are interested in the conditions 

when this system admits of a particular solution satisfying inequality (1.3). Then by 

virtue of Eqs. (1.4), the system of equations (1.1) can be replaced by an equivalent 

system (1.2). 

2. We investigate the case m = 2. Let 
*. 

Ql = l/2 aq,‘2 + cq;q; + lizkq,‘2, q3” = 1f2ciq1’” + yq1’q2’ + 1&$q2’2 (2.1) 

where a, b, C, CJ, p, y are functions of qt and qs. We 

@ = r/J (41, 42) 4c2 + 2 (41, %I (11’9%’ + 

Condition (1.3) takes the form 

x1- - 2’ -,& 0 

Equations (1.6) are written in the form of the equations 

ax/i?q, -+ ax :I- cd = 0. dX/dqz + 

denote 

l/z y (41 ‘I $5) ‘la” (2.2) 

(2.3) 

CX + yz = 0 (2.4) 

(2.5) 

(2.6) 

which can be written more concisely with the aid of differentials 

dX + (ax + aZ) dql + (cX -I- yz) dq, = 0 

dY _i- (ci! -+ y J *) c/g1 -j (6% $- @I’) dqa 1 0 

d% I_- li, [cX + (n -1 )I) 2 +- aIT1 dql -t 

+ ‘i, Ibx + (c + p) % + yYldq, = 0 

We introduce into consideration functions of the coefficients of Eqs. (2.1) 

(2.7) 

P-8) 

(2.9) 

(2.10) 

The following theorem is valid. 
Theorem. For the system of equations (2.1) to be equivalent to any Lagrange sys- 

tem 15, (8) = L, (8) = 0 (0 is some function (2.2) satisfying inequality (2.3)) it is 

necessary and sufficient to fulfill one of the tnree conditions 

1) A, = B, = A, = B, = 0 



Proof. Let us assume that the system of e’quatio-m (2. 4j - (2.6) has a certain solu- 

tion X, Y, Z! which satisfies inequality (2.31, We consider d (fl- Xv relative CO (2.7) 

- (2.9) 
d (P - XY) = - (z= - XY) [(a + y) &l1+ (c + BJ &I 

Consequently (see (2, ZO)), 

dl+B,=O (&ii) 

Computing from Eqs. (2.4) - (2.6) the expressions 

@X 82X __--apy~* -_-=l:() a”Y PZ PZ 
%&J 1 

----T----0 
+&j-s ’ aq2ag1 t3g&2 ’ ag2agr ag3ag, 

and using relation (2. Kl), we obtain the system of equations 

8*X + A,2 = 0, -dsY f B,2 = 0, B,X + A:Y = 0 (Z.lS) 

which the functions X, Y, 2 must satisfy identically. Two cases are possible: Al = As= 
= 3, = Oor Alo 4 df + Be8 =j= 0. 

n-r the first case (Condition (i) of the theorem ) the system of equations (2.7) - (2.91 
is a system in total differential. We can be convinced of this, for example, with the 
aid of Frobenius’ theorem, Consequently, there exist three independent integrals of Eqs. 

(2.7) - (2.9). The constants in these integrals can always be chosen so as to fulfil in - 

equality (2.3), otherwise the integrals would not be independent. 
In the second case there may be two subcasos Al = 0 or A, # 0. We consider each 

of them separately. Suppose that Al = 0. Then, from Eqs. (2.12) and condition (‘2.3) 

we obtain A& # 0. Co~equently~ Z = 6 (see (2.12)) and for the fulfiIlment of ine - 

quality (2.3) it is necessary that the equations (see (2.6), (2,12)) 

CX + aY = 0, bX + yY = 0, B,X + d,Y = 0 (2.13) 

be satisfied with nonzero values of X and Y. Therefore, it is necessary that a& - my = 
= 0. But then, taking (2.11) into consideration, we see (see (2.10)) that the identities 

an ac aT %I -=9 -&-I- a(71 ’ --0 dq,-- dp1 

are valid in the subcase being considered. Since 2 = 0, from (2.7) and (2.8) we obtain 

X = C_~0, Y = C ye-” (Cx, C, = co&) 
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By virtue of (2.13) it is necessary that 

Conversely, if Condition (2) of the theorem is fulfilled, then Eqs. (2.7) - (2.9) are 
satisfied by the functions 

X--.e-‘, Y= RJ.‘.lir:-“, Z=O, Xy__z:_lio 

Let us consider the second subcase: A, $2 0. From the first two equations in (&12) 
follow 

,++z, 1- ZZ +;! (Z.14) 
I 

while the third equation in (2.12) is fulfilled automatically. Inequality (2.3) is fulfilled 
if Z =+ 0 and A&, + Al2 + 0. Substituting the functions (2.14) into Eq. (2.9) we obtain 

This equation has a nontrivial solution if and only if the expression within the brackets 

is an exact differential of some function p (qt, G). Then .Z = C,e-‘” (C, is an arbitrary 
constant). The last four identities in Condition (3) of the theorem are necessary and 

sufficient for Eqs. (8.4) and (2.5) to be satisfied by the functions 

The theorem is proven. It is not difficult to obtain a corresponding generalization to the 
case when forces enter into the equations of motion. 

3, The preceding theorem admits of a simple formulation if a = b = c --= (1 or 
oL= fi = y = O.For example, let 

be the kinetic energy of a nonholonomic system with the constraints 

9j’ = f.i (417 qz14-?’ (j = :4, . .) I/) 

Obviously, the Chaplygin equations, solved relative to qI”, q?“, have in the case of the 
inertial motion of the system the form (2.1) where a .-z b 7~ C ~20. From the theorem 
in Sect. 2 it follows that for the equivalence of these equations to a Lagrange system it 
is necessary and sufficient that 

As an example let us consider the well-known Chaplygin problem of the nonholonomic 
inertial motion of a body along a horizontal plane Cl]. A rigid body rests on a plane at 
three points, two of which are freely sliding legs while the third is the point iz of contact 
of a knife-edged caster rigidly attached to the body. The caster cannot slide in a direc- 

tion perpendicular to its plane. Let us assume also that the center of gravity of the rigid 
body is located in the vertical plane passing through the point tl perpendicular to the 
caster’s plane. Let q, be the angle of rotation of the body around a vertical axis, and 
let qZ. q3 be the Cartesian coordinates of point A on the horizontal plane. The non - 
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holonomic condition is expressed by the equation q3 = qz tg q1 and the kinetic energy 
of the body by 

7’ = + i(qr’ - //1*/i cos 71)~ + (qj’ - q~‘k sin ~1): + lyl'z] (VI, k, 1 = cons0 

Solving the Chaplygin equations relative to the accelerations we obtain 

(II ** = 0, VA” = - ‘ll”I”’ tg I71 (3.2) 

Consequently, a = b = c = 0, a = f3 = 0, y = -tg ql. Condition (3.1) is not fulfilled. 
Chaplygin showed [l] that if in the case being considered we introduce a nonholonomic 

coordinate s ,namely the length of the trajectory arc of point A, then in the variables 

s and 9, the equations of motion take the form of the Lagrange equations 5” = 0, 41 = 

= 0 (see [13]). From the theorem that was proved it follows that it is impossible to write 

Eqs. (3.2) in Lagrange coordinates in the form of the equations L, (0) - L, (0) = 0 what- 

ever be the function (2.2) satisfying the inequality (2.3). 

4, Let us indicate one condition under whose fulfillment the integration of the Chap- 
lygin equations can be replaced by the integration of the Lagrange equations. Let ql,. . . , 

*.*, Qn be the coordinates of a mechanical system whose motion is restricted by the 

constraints 
Qi’Z i ‘is (Q/ftl, . . . , ‘7,) ‘I.’ L (i = 1,. . . , k) (4.1) 

s=k+l 

Assume that the Lagrangian function of the system has the form 

L=fh(a’,..., ~k’)+e2(Qk+1”...’ (I,‘, Qk+I ,... 1 ‘I,) 

We write the equations of motion in the Routh form 

L, (el, = ki (:‘=i,...,k) 

Ls (02) = Rs, Rs = - i hinis (s= k$-l,...,n) 
i=l 

(4.2) 

(4.3) 

(4.4) 

Using the constraint equations (4.1) we express the multipliers hi as functions of 
. . 

q k+l,.., q,,, qk+l, **.I qn- Then Eqs. (4.4) can be considered independently of (4.3). 

For comparison we write down the Chaplygin equations 

The asterisk denotes the result of eliminating the velocities qi’ (i = 1, . . . . k) from the 
corresponding expressions (see (4.1)). Equations (4.4) and (4.5) are equivalent. There- 

fore, if there were t0 exist a function 0 = t) (ik+l, .,., &,‘, qk+l, . . . . qn) such that (‘) 

Hs = Ls (9) (,~=k+l,...,n) (4.6) 

by virtue of Eqs. (4.4) and of 
det 

II 
a2 0% - 0) 

aqs*a9; #O 

*) Conditions (4.6) have been obtained by other means by S. 0. Titkova (see S. 0. TLtkova: 
The rolling of a ball on a rough plane. Candidate’s Dissertation, Alma - Ata, Izd. Kaz- 

akhs. Gos. Univ., 1970). 
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then the Chaplygin equations would be equivalent to the Lagrange equations L, (8, - 
-8)=O(J = k+ 1 ,...,n). The function 6 = 0, satisfies the stated conditions if 

H 
k+l 

=...=Kn=O (4.7) 

Condition (4.7) is sufficient for Eqs. (4.5) to be replaceable by the equations L, ( tJz) = 
= u, (s 1 /i + 1 ,....n). Obviously, relations (4.7) are fulfilled if & = ... Z &i = 0. 
Precisely this case obtains for the inertial motion without sliding of a homogeneous ball 

along a plane. Here [8] 

or =-_ 9 (q,.:! _, ,,,‘?) ,,1’, ! 
- * 02 : -yj-- (c/s’:! + c/4’? + c/,,‘.! -I- Llc/r’r/s’ rOif/.c) 

where ql and ~1~ are the Cartesian coordinates of the point of tangency on the plane, 

Qsr ~l4, ‘16 are Euler angles, m is the ball’s mass and a is its radius. It can be shown [14] 

that the reaction of the plane on the ball is directed perpendicularly to the plane. Con- 

sequently, reaction forces do not enter into the Routh equations, i.e. a1 = ?iZ = 0. The 

validity of the equations L, (0,) =LI (6,) = L, (0,) = 0 has been proved in [S] by direct 
computations, proceeding from the Chaplygin equations set up for the ball. 

Note that relations (4.7) may be fulfilled when Ai2 i . . . + Ak2 # 0. An example is a 

homogeneous circular disk roll@ under inertia along a rough horizontal plane under the 

condition that the disk’s plane remains vertical during the whole time of motion. Let 
q1 and qa be the Cartesian coordinates of the point of tangency on the plane, q3 be 

the angle of the natural revolution of the disk, Q, be the angle of rotation around the 

vertical axis. The constraint equations are the following: or’== ---a~,’ cos ,J,, q2 =- 

- a73’ sin #*The Lagrange system has the form (4.2) where 

81 = ‘/LIII (‘II” + ‘7s.Z), 62 := ‘/,!)!U! (//a’” + ‘/2(/4’?) 

(m is the disk’s mass, (1 is its radius). It is not difficult to be convinced that 

h, = maq3’~14’ sin ({a, j.! = - ma(j3’q4’COS 04 

but R, = Rq = 0. 
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We propose an approximate method for the investigation of the stability of sys- 

tems of linear equations with stationary random coefficients, based on the use 
of the method of perturbations. The problem is reduced to the investigation of 
the stability of a system of finite-difference equations whose coefficients are de- 

termined by the spectral densities of the random parameters. Stability conditions 

for systems of linear equations with random coefficients have been considered 

by many authors [l - 51. For systems whose coefficients are Gaussian white noises, 

exact stability criteria have been obtained [l]. Approximate conditions based 
on the use of asymptotic methods have been found in a number of papers [3, 43 
principally for second-order systems with small stationary perturbations of the 

parameters. The application of these same methods to higher-order systems 
leads to complicated calculations. 

1. We consider the nth order equation 

y’ = [C + pG (t) - p?B,l \ (1.1) 

Here C is a real IZ j: rz matrix with eigenvalues h, = ik, (s = 1,. . . , 2F), Reh,< 

< 0 (S 2 2F + I,..., n);we assume that all the k, are distinct (and, obviously, pair- 
wise opposite). The elements of the matrix G (t) are centered stationary random proc- 

esses, B, is a real matrix, p is a small parameter. 


